
1

x(n) ' x(t)*(t&nT) ' x(nT)*(t&nT), (1)(1)

x(n) ' j
4

n'&4
x(nT)*(t&nT). (2)(2)

FOURIER ANALYSIS OF DISCRETE-TIME SIGNALSFOURIER ANALYSIS OF DISCRETE-TIME SIGNALS

Now that we have examined the Fourier series and Fourier transforms of

continuous signals we want to develop the Fourier series and transforms for discrete

signals.  We know that Fourier analysis allows us to expand a time domain signal into

a different representation which indicates the frequency or spectral content of the

signal.  This frequency domain representation of the signal provides convenience in

determining the time domain output of a system to an arbitrary input, and at the

same time gives insight into the frequency domain representations of the input, the

system response, and the output of the system.  We now extend these Fourier

analysis concepts to discrete time signals.  As a first step let's define some terms that

sometimes get confusing.

Before we can begin analysis of a discrete time signal we need to understand

what this signal is and where it comes from.  A discrete time signal is simply a

continuous time signal which has been sampled.  If a function, x(t), is continuous at

t=nT, where T is the sampling interval, then a sample of x(t) at time nT is expressed

as

where the delta function is used to hold the proper place on the time axis.  This

multiplication yields an amplitude equal to the value of x(t) at t=nT.  If we now let

n be a sequence of integer values, rather than one specific sample time, i.e., n = 0,

±1, ±2, ... then

We will use this discrete time signal x(n) and look at three distinctly different

transforms:  the discrete time Fourier series, which is a series representation for

periodic signals just as before; the discrete time Fourier transform (DTFT) which is

continuous function which represents the frequency transform of the sampled signal;

and the discrete Fourier transform (DFT) which is a discrete signal used to represent
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x(n) ' x(n%N). (3)(3)

x(t) ' a cos
2Bt
T

, (4)(4)

x(n) ' an cos
2Bn
N

. (5)(5)

S0 '
2B
N

. (6)(6)

the frequency transform of the sampled signal.  The DFT is of the form readily used

by computers in digital signal processing and has become extremely valuable in that

area.

A.A. FOURIER SERIES FOR PERIODIC DISCRETE TIME SIGNALSFOURIER SERIES FOR PERIODIC DISCRETE TIME SIGNALS  

Recall that for periodic continuous time signals we developed the Fourier series to

represent them.  We will now develop the Fourier series for a periodic discrete time

signal.  A signal, x(n), is periodic if for some integer N

A consequence of this relationship that we will make great use of is that once we

know these N values of x we know all values of x for all values of n since x repeats

itself after N samples.

For a continuous time cosine signal we know that

where T is the period of the signal and (small omega) T0 = 2B/T.  For the sampled

signal letting t=nT (=n), and the period N we have

We can define a fundamental frequency for the discrete time signal, calling it by large

omega

Notice that since we dropped T from nT (T has units of seconds), that the units of S

are radians rather than radians per second as with T.
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x(t) ' j
4

n'&4
cn e jnT0t

, (7)(7)

cn '
1
T m

4

&4
x(t) e &jnT0t dt. (8)(8)

x(n) ' j
N&1

k'0

ak e jkS0n
. (9)(9)

ak '
1
N j

N&1

n'0

x(n) e &jkS0n
. (10)(10)

x(n)*k'0 ' a0 e 0 ' a0, (11)(11)

Using the exponential form of the Fourier series recall that we found that

where

By analogy let t 6 n, T 6 S, (and letting k become the summation indicator) Eq. 7

becomes

Notice that the summation extends from zero to N-1 (yielding N values for x(n))

since x(n) repeats after N, the period of x, and that n extends over all values

(representing time). 

Carrying the analogy to completion, we let T 6 N and Eq. 8 becomes

Notice that the infinite integral becomes a summation over N values because the

values repeat after those N values.  This completes the analogy so that we have

Equations 9 and 10 to define the discrete time Fourier series.

We can see that the Fourier series is a finite sum (Eq. 9 sums only N different

values) rather that the infinite sum for the continuous case.  Also notice that Eq. 9

gives us the frequency components of x(n), e.g., for k = 0, we have

which is the dc value of x(n).  Similarly, for k = 1
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x(n)*k'1 ' a1 e jS0n
, (12)(12)

x(n) ' j
N&1

k'0
ak e jkS0n

û j
N&1

k'0

1
N j

N&1

m'0

x(m) e &jkS0m e jkS0n

'
1
N j

N&1

m'0
x(m) j

N&1

k'0
e jkS0(n&m)

.

(13)(13)

j
3

k'0
e

jk B
2 ' e j0 % e

j B
2 % e jB % e

j 3B
2 ' 0. (14)(14)

which is the value for the fundamental frequency, S0.  The values of the remaining

harmonics can be found in the same manner.  Again unlike the continuous case, there

are not an infinite number of harmonics; k represents the harmonic number and

extends from 0 to N-1, so that there are N total harmonics including dc and the

fundamental.

We asserted that through analogy with the continuous case that the equations

of Eq. 9 and 10 represent the Fourier series for the discrete case.  To prove if this is

true let's substitute Eq. 10 directly into Eq. 9 to see what we get for x(n),

To evaluate the last summation of Eq. 13, recall that the integral of the

conjugate multiplication of orthogonal functions over one period is zero.  The same

holds true over one period of summation of discrete orthogonal functions.

Let's see why this is true.  As an example, let N = 4.  With N = 4, S0 = 2B/4

= B/2.  The summation of a complex exponential, ejkS;, over one period will be

In graphical form you can see these four vectors in the real-imaginary plane as shown

below.  Notice that since the complex exponential has a magnitude of unity, the

vectors in the real-imaginary plane have unit magnitude.  The vector at k=0 is real

and has a value of 1.  The vector at k=2 is real and has a value of -1.  The two real

values therefore cancel each other.  Similarly, the two imaginary values cancel each
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e jkS0
n
' e

jk B
2

n
. (15)(15)

j
3

k'0
e

jk B
2

n
e

jk B
2

m
(

' j
3

k'0
e

jk B
2

n
e
&jk B

2
m
. (16)(16)

other so that the net of the summation is zero as predicted in Eq. 14 (and as we

expected since we know that the summation over one period of a periodic signal is

zero.

Now let's raise the exponential by a power of n.  With N=4 we now have 

We want to multiply this exponential by the complex conjugate of the orthogonal

vector in m and sum over one period, or

In graphical form we see these two vectors below for the case when n=1 and m=2.

For the n vector we sum 

k 0 1 2 3

ejkS;n 1  ejB/2 -1 ej3B/2  = 0
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just as before. For the m vector we sum 1, -1, 1, -1.  To get the sum of the

multiplication of the two vectors we add 

k 0 1 2 3

  (1)(1)    +   (-1)(ejB/2)   + (1)(-1)   +  (-1)(ej3B/2) = 0.  

This tells us that if m…n the sum over one period of the exponentials is zero.  This is

what was predicted due to orthogonality.  But also by orthogonality we should have

a nonzero value if the exponentials are equal, i.e., m=n.  This can be seen in the

figure below.  Summing the multiplication of the two vectors yields

k 0 1 2 3

(1)(1)  ejB/2ej3B/2     (-1)(-1)   ej3B/2ejB/2 = 4.  

Therefore, the sum over one period of two exponentials, one raised to n and the
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0, m…n

j
N&1

k'0
w k

N
n

w&k
N

m
'

N, m'n

(17)(17)

x(t) '
1

2B m
4

&4
X(T) e jTt dT, (18)(18)

X(T) ' m
4

&4
x(t) e &jTt dt. (19)(19)

x(n) '
1

2B m
2B

0
X(S) e jSn dS. (20)(20)

other to -m when m=n, is N.  For shorthand notation we use wN to represent ejk;.

Using this notation we see that

B.B. DISCRETE TIME FOURIER TRANSFORMDISCRETE TIME FOURIER TRANSFORM  

Because we know that not all signals are periodic, we must find a method of

obtaining the frequency transform of discrete nonperiodic signals.  In continuous

signal analysis we let the period approach infinity and determined the frequency

domain description of the continuous signal, which was the Fourier transform.  The

transformation led to the transform of the time domain signal and the inverse

transform which allowed us to return to the time domain.  These two equations were

determined to be

and

Using the direct analogy methods that we used for the discrete Fourier series,

we can substitute for Eq. 18 as

Making the direct substitutions of n for t and S for T we see that Eq. 20 is identical

to Eq. 18 except for the limits of integration.  The discrete version of Eq. 20 need

only be integrated from 0 to 2B since the frequency response of the discrete time

signal is periodic at 2B.  This arises from the fact that the complex exponentials are

periodic at 2B.
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X(S) ' j
4

n'&4
x(n) e &jSn. (21)(21)

x(n) û 1
2B m

2B

0
j
4

m'&4
x(m) e &jSm e jSn dS. (22)(22)

x(n) û 1
2B j

4

m'&4
x(m) m

2B

0
e &jSm e jSn dS. (23)(23)

x(n) û 1
2B j

4

m'&4
x(m) 2B

m'n
(24)(24)

Next substituting the discrete variables into Eq. 19 we get

We see that Eq. 21 is identical to Eq. 19 except that the integral over t became a

summation over n.  This follows from the fact that x(n) is zero except when t = nT,

so that the infinite integral becomes the infinite summation.

Eq. 21 is the discrete time Fourier transform (DTFT) and Eq. 20 is the inverse

discrete time Fourier transform (IDTFT).  The only thing left is to verify the validity

of these substitutions.

To see if these substitutions are valid, lets substitute Eq. 21 directly into Eq.

20 and see what we get.  Changing the index of summation from n to m this will give

Rearranging we have Eq. 22 into the form of

Knowing the rules of orthogonal function integrations over one period, we see that

the integral is zero except when m = n, when the integral will be 2B.  Equation 23

reduces to

and the summation will therefore be zero except when m = n, the 2B's will cancel

and the right side does indeed equal x(n).

Recall from continuous-time analysis that the Fourier transform of a shifted

delta function is
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X(T) ' m
4

&4
*(t&t0) e &jTt dt ' e &jTt0. (25)(25)

X(T) ' m
4

&4
j
N1

k'&N1

*(t&kT) e &jTkT dt

' j
N1

k'&N1
m

4

&4
*(t&kT) e &jTkT dt ' j

N1

k'&N1

e &jTkT.

(26)(26)

X(S) ' j
N1

n'&N1

e &jSn. (27)(27)

j
4

n'&4
*x(n)* < 4. (28)(28)

If we extend this to a string of delta functions (describing perhaps a discrete square

wave) from t = -N1 to N1, we would get

Now, if we substitute our discrete time equivalents, i.e., T 6 S, k 6 n, and nT 6 n, we

will have

You can see that this is exactly what we will get by direct evaluation using Eq. 21.

The fact that the DTFT is periodic will become more evident when we

examine the sampling theorem.

We have a condition which ensures convergence, just as we had the Dirichlet

conditions in the continuous domain.  The DTFT for a signal x(n) exists if the sum

of the Eq. 21 converges for all real values of S.  Therefore, the series will converge

if

Note, that like the Dirichlet conditions this is not a necessary condition, just that if

this condition is satisfied the existence of the transform is guaranteed.  A simple

example of this is a constant (i.e., an infinite string of delta functions) will produce

a transform similar to Eq. 27 with the limits of the summation equal to ± 4, so that
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x(n) ' 1 º j
4

n'&4
e &jSn. (29)(29)

X(S) ' j
4

k'&4
*(S&2Bk). (30)(30)

x(n) '
1

2B m
2B

0
j
4

k'&4
*(S&2Bk) e jSn dS

'
1

2B j
4

k'&4
e j2Bkn.

(31)(31)

1 º 2B *(S&2Bk). (32)(32)

We saw for the discrete time Fourier series that we obtained discrete spectral

lines--only discrete frequencies, which are represented by delta function in the

frequency domain.  Therefore, we now want to know what a string of delta function

in the frequency domain will transform to in the discrete time domain.  Let our

frequency domain signal be an infinite string of delta functions separated in

frequency, S, by 2B, or

What is the DTFT of Eq. 30?  Using the direct method we use Eq. 20 to find

And, since k and n are always integers, the complex exponential always has an

exponent equal to j2B, meaning that the summation sums an infinite string of ones.

Therefore, x(n) = 1/2B, or

This signifies that an infinite string of delta functions in the n domain transforms to

another infinite string of delta functions in the S domain.

We now want to determine the DTFT of periodic signals.  In the continuous

domain we found that exp(jT0t) W 2B*(T - T0).  Similarly, we find that exp(jS0n) W

2B*(S - S0 - 2Bk), for all k.  The difference is that since S is periodic in 2B, we must

add the 2Bk term to allow for that periodicity.  This relationship can be easily

verified by using the techniques used above to find the IDTFT of the delta function,
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x(n) ' A cosS0n '
A
2

e jS0n
% e &jS0n

, (33)(33)

X(S) ' B j
4

k'&4
*(S & S0 & 2Bk) % *(S % S0 & 2Bk). (34)(34)

x(n) ' A sinS0n '
A
2j

e jS0n
& e &jS0n

, (35)(35)

X(S) ' &jB j
4

k'&4
*(S & S0 & 2Bk) & *(S % S0 & 2Bk). (36)(36)

X(S % 2B) ' X(S). (37)(37)

X(S).  Having found this relationship, it is an easy step to proceed to finding the

DTFT of a cosine function, A cosS0n.  We see that if

then we also see that

Using the same procedure we can find that if

then

We have seen that if we can determine the properties of a transform that we

can gain greater insight into, and increase the versatility of the transform.  Properties

can also make the transform easier to use.  Therefore, we will examine a few of the

properties of the DTFT.

The major difference between the continuous Fourier transform and the

discrete time Fourier transform is that the discrete version is periodic at 2B, or

We have seen one ramification of this in that we only had to integrate from 0 to 2B.

Many of the other properties are analogous to the continuous transform

properties that we have already seen.  Some of these are:

Linearity:   a1x1(n) + a2x2(n) W a1X1(S) + a2X2(S)

Time shifting:          x(n - n0) W exp(-jSn0)X(S)
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j
4

n'&4
*x(n)*2 '

1
2B m

2B

0
*X(S)*2dS. (38)(38)

y(t) ' m
4

&4
x(J) h(t&J) dJ, (39)(39)

Y(T) ' X(T)H(T). (40)(40)

y(n) ' j
4

m'&4
x(m) h(n&m), (41)(41)

Y(S) ' X(S)H(S). (42)(42)

y(n) ' j
4

m'&4
h(m) x(n&m), (43)(43)

Frequency shifting: exp(jS0n)x(n) W X(S - S0)

Scaling:   x(nk) W  X(S/k)

Differentiation (S):   nx(n) W jX'(S)

Parseval's theorem exists here as well and we find

In the continuous domain we saw that convolution was

and

By analogy we can state then that

!4 # n # 4, and

As we already know, many times the input to the system is a sinusoid,

whether it be a cosine wave or a sine wave.  Whichever it is it can always be

described by a linear combination of complex exponentials using the linearity

property.  Letting 

x(n) = ejSn, and recognizing that Eq. 41 is equivalent to

we see that for a complex exponential input we have
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y(n) ' j
4

m'&4
h(m) e jS(n&m) ' j

4

m'&4
h(m) e jSne &jSm

' e jSn j
4

m'&4
h(m) e &jSm ' e jSn H(S).

(44)(44)

yss(n) ' x(n) H(S). (45)(45)

H(S) ' j
4

m'&4
h(m) e &jSm, (46)(46)

h(n) ' *(n) % *(n&1), (47)(47)

x(n) ' e
j B

2
n
, &4 # n # 4. (48)(48)

H(S) ' j
4

m'&4
[*(m) % *(m&1)] e &jSm ' 1e j0 % 1e &jS

' 1 % e &jS.

(49)(49)

This is the steady-state response, yss(n), of the system, i.e., the response after all the

transients have died away.  Noting that the exponential multiplier of H(S) is x(n),

we can rewrite Eq. 44 as

This quantity, H(S), which we know is

is known by several names, such as, the characteristic value, the eigenvalue, or the

frequency response of the system. 

As an example, let

and let 

What is the steady-state response of this system?  First, H(S) is

From Eq. 48, we see that S = B/2 and evaluating Eq. 49 at this frequency we get
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H B
2

' 1 % e
&j B

2 ' 1 & j ' 1.41e
&jB

4 . (50)(50)

yss(n) ' x(n)H(S) ' e
jB

2
n

1.41e
&j B

4 ' 1.41e
j( Bn

2
&
B
4

)
. (51)(51)

x(n) ' j
4

n'&4
x(nTs)*(t&nTs). (52)(52)

We can now solve for the steady-state output as

Note that the system has changed the amplitude of the input signal from 1 to

1.41, and that the phase has been shifted by B/4 radians. 

C.C. SAMPLING THEOREMSAMPLING THEOREM

The purpose of a conversion process has to be to change the signal from analog to

discrete form (or vice versa) without loss of information.  The link between the two

forms, which guarantees recoverability of the information contained in the signal, is

the sampling theorem.  Sampling is the process of periodically evaluating the value

of the signal at the very moment that it is sampled (instantaneous sampling).  We

will now see how often a signal has to be sampled (i.e., the sampling rate fs) in order

to be guaranteed of recovering the information in that signal.

Let's take an arbitrary analog signal, x(t).  If we sample x(t) at a rate of fs, or

every Ts seconds, we would take our first sample at time t=0, then at time t=Ts, then

at time t=2Ts, etc.  Each time we take a sample we get the instantaneous value of

x(t) measured at the moment we take the sample so that we get a series of values

x(0), x(Ts), x(2Ts), etc., which in general would be a series of x(nTs) values, !4 # n

# 4.  Multiplying these values by delta functions to hold their places in time will give

us the sampled waveform, x(n).  In mathematical form x(n) will be the sum of all

samples

This is called the ideal sampled signal.
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x(nTs) ' e jTTsn
(53)(53)

x(n) ' e jSn, (54)(54)

S ' TTs '
k 2B

N
. (55)(55)

x(n%N) ' x(n) (56)(56)

x(n%N) ' e jS(n%N) ' e jSne jSN

' e jSn e
j( k2B

N
)N

' e j(Sn%k2B),
(57)(57)

To determine the requirements of the Sampling theorem, we will look at the

implications in both discrete frequency, S, and analog frequency, T.  First the

discrete case.

Consider a complex exponential input to the ideal sampler, i.e., x(t) = ejTt.

The output of the sampler will then be

or written as a sequence in discrete frequency

where S = TTs = 2BfTs is the digital or discrete frequency.  Assuming that the

sampling rate is such that x(nTs) and x(n) are periodic requires that, for integers k

and N

The analog frequency, T, can be any value, i.e., 0 # T # 4.  With no limits on

T, what are the limits on S?

For x(n) to be periodic, we require that 

which, when combining Eq. 56, 55, and 54 we see that

which, simply put says that if x(n) is periodic at N, then S is periodic at 2B.

Now, let's use these results to see what is required for two sequences to be

distinguishable from each other.  Define two sequences x1(n) = exp(jS1n) and x2(n)

= exp(jS2n).  It is clear that these two sequences are identical only if S1 = S2.  But

what if S2 = S1 + k2B.  According to Eq. 57, these two sequences are
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&B # S < B. (58)(58)

S ' TTs ' 2BfTs '
2Bf
fs

(59)(59)

&
fs

2
# f <

fs

2
. (60)(60)

p(t) ' j
4

n'&4
*(t&nTs). (61)(61)

xs(t) ' x(t)p(t) ' x(t) j
4

n'&4
*(t&nTs). (62)(62)

indistinguishable even though are not equal.  This is manifested graphically in that

the two frequencies will appear at the same locations on the real-imaginary plane.

We see that for unambiguous determination of x(n) we must require that 

So, what does all this have to do with the Sampling theorem?  Recalling that

we can use this relationship and Eq. 58 to see in the analog domain that

Equation 60 tells us that the frequency of x(t) must be no higher than half the

sampling rate (or sampling frequency) in order to have unambiguous recoverability

of the signal x(t) from x(n).  We can generalize this statement to say that the highest

frequency of x(t), fmax, cannot exceed fs/2.

Now that we have seen the discrete frequency requirements of the Sampling

theorem and the bridge into the analog world, let's now look at the Sampling from

the analog point of view.

Let's define our sampled signal as the multiplication of two signals.  These two

signals are the input signal, x(t), and the instantaneous sampler, *(t).  An infinite

string of delta functions separated by the sampling period, Ts, from the sampler, say

p(t), is of course

The sampled signal, call it xs(t), will now be the product of these two signals,
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ö[x(t)y(t)] '
1

2B m
4

&4
X(u)Y(T&u)du, (63)(63)

P(T) ' Ts j
4

n'&4
*(T&nTs). (64)(64)

Xs(T) ' ö[x(t)p(t)] '
1

2B m
4

&4
X(u) j

4

n'&4
Ts*(T&nTs&u)du

'
Ts

2B j
4

n'&4
X(T&nTs).

(65)(65)

From the convolution and duality properties

which states that multiplication in the time domain transforms to convolution in the

frequency domain.  To use this property to find the Fourier transform of Eq. 62, we

first find the F.T. of p(t).  By the sifting property of the delta function, this will be

The F.T. of x(t) yields some function in the frequency domain, X(T).  This

function has an amplitude as a function of T, and since all real signals are time-

limited, X(T) extends (theoretically) to infinity.  However, we define the range that

a function extends as the bandwidth, W, of the signal.  There are different ways to

define the bandwidth, one of which being the point that the amplitude decreases to

a value of 0.707 of the maximum value.  For this example, we define the bandwidth

of the signal to extend from 0 to W.  The bandwidth can be thought of as the highest

frequency component of the signal x(t). 

We can now find Xs(T) as

Equation 65 contains more information that you might first think.  Let's

examine what we can learn from this equation.  First of all this is a frequency domain

representation, so this the F.T. of our sampled signal (which we know as x(n)).  It

is, of course, a continuous signal, being defined for all T.  It is repetitive, and repeats

at intervals of nTs.  Each repetition as a mid-frequency value of Ts/2B = fs.  Now,

let's let n = 0.  This is the frequency domain representation at X(T - 0) or X(T).

Putting in n = 1, we get X(T - Ts), which is a replica of X(T) shifted in frequency out
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Ts > 2W. (66)(66)

to T = Ts.  Similarly, letting n = -1, replicates X(T) at T = -Ts.  Since the summation

extends over all n, you can see that X(T) is replicated an infinite number of times at

intervals of Ts. 

We require that the sampling frequency Ts be greater than 2W, where W is the

highest frequency of X(T), or

We see that this is equivalent to Eq. 60.  This minimum sampling rate of two times

the highest frequency is called the Nyquist rate.

Since no signal is strictly band-limited, how can we prevent aliasing?  There

are two ways.  One, filter the signal, X(T), to reduce higher frequency components

prior to sampling, and two, sample at a higher rate than the Nyquist rate to reduce

the proximity of the replicas so that they have less opportunity to overlap.

D. DISCRETE FOURIER TRANSFORMDISCRETE FOURIER TRANSFORM

The Fourier transform has proven to be invaluable in the analysis of linear systems.

But, unlike the Fourier series, the transform yields continuous frequency spectra.  If

we wish to perform analysis of the systems by computer, we have no way of

representing these continuous spectra in a form useable by the computer.  What we

need is a transform which has discrete frequency components, just as in the Fourier

series.  The answer is the discrete Fourier transform (DFT).  Representing the spectra

of the transform in discrete form is the key to allowing analysis by computer, and is

the essence of digital signal processing.

The derivation of the DFT is simple.  The discrete Fourier series gave us every

element that we required but was only defined for periodic signals.  Let's let a

nonperiodic signal become periodic, at period N, but only consider N elements of the

newly created periodic signal.  We know that periodic time-domain signals result in

discrete frequency domain signals.

Looking back to the discrete Fourier series, we multiply both sides of Eq. 10

by N to get a function of frequency, X(k),
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Equation 9, using X(k), will now be

These equations are now suitable for use on a digital computer.  But notice

that both n and k vary from 0 to N-1.  Therefore, for each value of X(k), N

multiplications occur−one for each n.  Finding X(k) for all k's will require N2

multiplications.  This can be a large number.  For this reason, a more efficient

algorithm is normally used, called the Fast Fourier Transform.  You have already

studied FFTs with Prof. Garcia.

MATLAB uses both DFTs and FFTs.  If the number of elements of x is a power

of two, the faster FFT is used.  Otherwise it uses DFT.


